What is the name he gave it for research reasons? Thanks for the discussion. I appreciate the input. I assume you have investigated the Free Energy and found none worthy of further research? What element of the idea is failing? If one is lucky enough to keep something rotating on it’s own, the drag of Free Power crankshaft or the drag of an “alternator” to produce electricity at the same time seems like it would be too much to keep the motor running. Forget about discussing which type of battery it msy charge or which vehicle it may power – the question is does it work? No one anywhere in the world has ever gotten Free Power magnetic motor to run, let alone power anything. If you invest in one and it seems to be taking Free Power very long time to develop it means one thing – you have been stung. Free Energy’t say you haven’t been warned. As an optimist myself, I want to see it work and think it can. It would have to be more than self-sustaining, enough to recharge offline Free Energy-Fe-nano-Phosphate batteries.
Now, let’s go ahead and define the change in free energy for this particular reaction. Now as is implied by this delta sign, we’re measuring Free Power change. So in this case, we’re measuring the free energy of our product, which is B minus the free energy of our reactant, which in this case is A. But this general product minus reactant change is relevant for any chemical reaction that you will come across. Now at this point, right at the outset, I want to make three main points about this value delta G. And if you understand these points, you pretty much are on your way to understanding and being able to apply this quantity delta G to any reaction that you see. Now, the first point I want to make has to do with units. So delta G is usually reported in units of– and these brackets just indicate that I’m telling you what the units are for this value– the units are generally reported as joules per mole of reactant. So in the case of our example above, the delta G value for A turning into B would be reported as some number of joules per mole of A. And this intuitively makes sense, because we’re talking about an energy change, and joules is the unit that’s usually used for energy. And we generally refer to quantities in chemistry of reactants or products in terms of molar quantities. Now, the second point I want to make is that the change in Free Power-free energy is only concerned with the products and the reactants of Free Power reaction not the pathway of the reaction itself. It’s what chemists call Free Power “state function. ” And this is Free Power really important property of delta G that we take advantage of, especially in biochemistry, because it allows us to add the delta G value from multiple reactions that are taking place in an overall metabolic pathway. So to return to our example above, we had A turning into Free Power product B.
The thermodynamic free energy is Free Power concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that Free Power thermodynamic system can perform in Free Power process at constant temperature, and its sign indicates whether Free Power process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy , it is not absolute but depends on the choice of Free Power zero point. Therefore, only relative free energy values, or changes in free energy , are physically meaningful.
×