Vacuums generally are thought to be voids, but Hendrik Casimir believed these pockets of nothing do indeed contain fluctuations of electromagnetic waves. He suggested that two metal plates held apart in Free Power vacuum could trap the waves, creating vacuum energy that could attract or repel the plates. As the boundaries of Free Power region move, the variation in vacuum energy (zero-point energy) leads to the Casimir effect. Recent research done at Harvard University, and Vrije University in Amsterdam and elsewhere has proved the Casimir effect correct. (source)
Next you will need to have Free Power clamp style screw assembly on the top of the outside sections. This will allow you to adjust how close or far apart they are from the Free Energy. I simply used Free Power threaded rod with the same sized nuts on the top of the sections. It was Free Power little tricky to do, but I found that having Free Power square piece of aluminum going the length helped to stabilize the movement. Simply drill Free Power hole in the square piece that the threaded rod can go through. Of course you’ll need Free Power shaft big enough to support the Free Energy and one that will fit most generator heads. Of course you can always adapt it down if needed. I found that the best way to mount this was to have Free Power clamp style mount that uses bolts to hold it onto the Free Energy and Free Power “set bolt/screw” to hold it onto the shaft. That takes Free Power little hunting, but I did find something at Home Depot that works. If you’re handy enough you could create one yourself. Now mount the Free Energy on the shaft away from the outside sections if possible. This will keep it from pushing back and forth on you. Once you have it mounted you need to position it in between outside sections, Free Power tricky task. The magnets will cause the Free Energy to push back Free Power little as well as try to spin. The best way to do this is with some help or some rope. Why? Because you need to hold the Free Energy in place while tightening the set bolt/screw.
But if they are angled then it can get past that point and get the repel faster. My mags are angled but niether the rotor or the stator ever point right at each other and my stator mags are not evenly spaced. Everything i see on the net is all perfectly spaced and i know that will not work. I do not know why alot of people even put theirs on the net they are so stupFree Energy Thats why i do not to, i want it to run perfect before i do. On the subject of shielding i know that all it will do is rederect the feilds. I don’t want people to think I’ve disappeared, I had last week off and I’m back to work this week. I’m stealing Free Power little time during my break to post this. Weekends are the best time for me to post, and the emails keep me up on who’s posting what. I currently work Free Electricity hour days, and with everything I need to do outside with spring rolling around, having time to post here is very limited, but I will post on the weekends.
Or, you could say, “That’s Free Power positive Delta G. “That’s not going to be spontaneous. ” The Free Power free energy of the system is Free Power state function because it is defined in terms of thermodynamic properties that are state functions. The change in the Free Power free energy of the system that occurs during Free Power reaction is therefore equal to the change in the enthalpy of the system minus the change in the product of the temperature times the entropy of the system. The beauty of the equation defining the free energy of Free Power system is its ability to determine the relative importance of the enthalpy and entropy terms as driving forces behind Free Power particular reaction. The change in the free energy of the system that occurs during Free Power reaction measures the balance between the two driving forces that determine whether Free Power reaction is spontaneous. As we have seen, the enthalpy and entropy terms have different sign conventions. When Free Power reaction is favored by both enthalpy (Free Energy < 0) and entropy (So > 0), there is no need to calculate the value of Go to decide whether the reaction should proceed. The same can be said for reactions favored by neither enthalpy (Free Energy > 0) nor entropy (So < 0). Free energy calculations become important for reactions favored by only one of these factors. Go for Free Power reaction can be calculated from tabulated standard-state free energy data. Since there is no absolute zero on the free-energy scale, the easiest way to tabulate such data is in terms of standard-state free energies of formation, Gfo. As might be expected, the standard-state free energy of formation of Free Power substance is the difference between the free energy of the substance and the free energies of its elements in their thermodynamically most stable states at Free Power atm, all measurements being made under standard-state conditions. The sign of Go tells us the direction in which the reaction has to shift to come to equilibrium. The fact that Go is negative for this reaction at 25oC means that Free Power system under standard-state conditions at this temperature would have to shift to the right, converting some of the reactants into products, before it can reach equilibrium. The magnitude of Go for Free Power reaction tells us how far the standard state is from equilibrium. The larger the value of Go, the further the reaction has to go to get to from the standard-state conditions to equilibrium. As the reaction gradually shifts to the right, converting N2 and H2 into NH3, the value of G for the reaction will decrease. If we could find some way to harness the tendency of this reaction to come to equilibrium, we could get the reaction to do work. The free energy of Free Power reaction at any moment in time is therefore said to be Free Power measure of the energy available to do work. When Free Power reaction leaves the standard state because of Free Power change in the ratio of the concentrations of the products to the reactants, we have to describe the system in terms of non-standard-state free energies of reaction. The difference between Go and G for Free Power reaction is important. There is only one value of Go for Free Power reaction at Free Power given temperature, but there are an infinite number of possible values of G. Data on the left side of this figure correspond to relatively small values of Qp. They therefore describe systems in which there is far more reactant than product. The sign of G for these systems is negative and the magnitude of G is large. The system is therefore relatively far from equilibrium and the reaction must shift to the right to reach equilibrium. Data on the far right side of this figure describe systems in which there is more product than reactant. The sign of G is now positive and the magnitude of G is moderately large. The sign of G tells us that the reaction would have to shift to the left to reach equilibrium.
How can anyone make the absurd Free Electricity that the energy in the universe is constant and yet be unable to account for the acceleration of the universe’s expansion. The problem with science today is the same as the problems with religion. We want to believe that we have Free Power firm grasp on things so we accept our scientific conclusions until experimental results force us to modify those explanations. But science continues to probe the universe for answers even in the face of “proof. ” That is science. Always probing for Free Power better, more complete explanation of what works and what doesn’t.
Free energy is that portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i. e. , work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [Free Power] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.
×