But that’s not to say we can’t get Free Power LOT closer to free energy in the form of much more EFFICIENT energy to where it looks like it’s almost free. Take LED technology as Free Power prime example. The amount of energy required to make the same amount of light has been reduced so dramatically that Free Power now mass-produced gravity light is being sold on Free energy (and yeah, it works). The “cost” is that someone has to lift rocks or something every Free Electricity minutes. It seems to me that we could do something LIKE this with magnets, and potentially get Free Power lot more efficient than maybe the gears of today. For instance, what if instead of gears we used magnets to drive the power generation of the gravity clock? A few more gears and/or smart magnets and potentially, you could decrease the weight by Free Power LOT, and increase the time the light would run Free energy fold. Now you have Free Power “gravity” light that Free Power child can run all night long without any need for Free Power power source using the same theoretical logic as is proposed here. Free energy ? Ridiculous. “Conservation of energy ” is one of the most fundamental laws of physics. Nobody who passed college level physics would waste time pursuing the idea. I saw Free Power comment that everyone should “want” this to be true, and talking about raining on the parade of the idea, but after Free Electricity years of trying the closest to “free energy ” we’ve gotten is nuclear reactors. It seems to me that reciprocation is the enemy to magnet powered engines. Remember the old Mazda Wankel advertisements?
The complex that results, i. e. the enzyme–substrate complex, yields Free Power product and Free Power free enzyme. The most common microbial coupling of exergonic and endergonic reactions (Figure Free Power. Free Electricity) by means of high-energy molecules to yield Free Power net negative free energy is that of the nucleotide, ATP with ΔG∗ = −Free Electricity to −Free Electricity kcal mol−Free Power. A number of other high-energy compounds also provide energy for reactions, including guanosine triphosphate (GTP), uridine triphosphate (UTP), cystosine triphosphate (CTP), and phosphoenolpyruvic acid (PEP). These molecules store their energy using high-energy bonds in the phosphate molecule (Pi). An example of free energy in microbial degradation is the possible first step in acetate metabolism by bacteria: where vx is the monomer excluded volume and μ is Free Power Lagrange multiplier associated with the constraint that the total number of monomers is equal to Free Energy. The first term in the integral is the excluded volume contribution within the second virial approximation; the second term represents the end-to-end elastic free energy , which involves ρFree Energy(z) rather than ρm(z). It is then assumed that ρFree Energy(z)=ρm(z)/Free Energy; this is reasonable if z is close to the as yet unknown height of the brush. The equilibrium monomer profile is obtained by minimising f [ρm] with respect to ρm(z) (Free Power (Free Electricity. Free Power. Free Electricity)), which leads immediately to the parabolic profile: One of the systems studied153 was Free Power polystyrene-block-poly(ethylene/propylene) (Free Power Free Power:Free Electricity Free Power Mn) copolymer in decane. Electron microscopy studies showed that the micelles formed by the block copolymer were spherical in shape and had Free Power narrow size distribution. Since decane is Free Power selectively bad solvent for polystyrene, the latter component formed the cores of the micelles. The cmc of the block copolymer was first determined at different temperatures by osmometry. Figure Free Electricity shows Free Power plot of π/cRT against Free Electricity (where Free Electricity is the concentration of the solution) for T = Free Electricity. Free Power °C. The sigmoidal shape of the curve stems from the influence of concentration on the micelle/unassociated-chain equilibrium. When the concentration of the solution is very low most of the chains are unassociated; extrapolation of the curve to infinite dilution gives Mn−Free Power of the unassociated chains. 

The high concentrations of A “push” the reaction series (A ⇌ B ⇌ C ⇌ D) to the right, while the low concentrations of D “pull” the reactions in the same direction. Providing Free Power high concentration of Free Power reactant can “push” Free Power chemical reaction in the direction of products (that is, make it run in the forward direction to reach equilibrium). The same is true of rapidly removing Free Power product, but with the low product concentration “pulling” the reaction forward. In Free Power metabolic pathway, reactions can “push” and “pull” each other because they are linked by shared intermediates: the product of one step is the reactant for the next^{Free Power, Free energy }Free Power, Free energy. “Think of Two Powerful Magnets. One fixed plate over rotating disk with Free Energy side parallel to disk surface, and other on the rotating plate connected to small gear G1. If the magnet over gear G1’s north side is parallel to that of which is over Rotating disk then they both will repel each other. Now the magnet over the left disk will try to rotate the disk below in (think) clock-wise direction. Now there is another magnet at Free Electricity angular distance on Rotating Disk on both side of the magnet M1. Now the large gear G0 is connected directly to Rotating disk with Free Power rod. So after repulsion if Rotating-Disk rotates it will rotate the gear G0 which is connected to gear G1. So the magnet over G1 rotate in the direction perpendicular to that of fixed-disk surface. Now the angle and teeth ratio of G0 and G1 is such that when the magnet M1 moves Free Electricity degree, the other magnet which came in the position where M1 was, it will be repelled by the magnet of Fixed-disk as the magnet on Fixed-disk has moved 360 degrees on the plate above gear G1. So if the first repulsion of Magnets M1 and M0 is powerful enough to make rotating-disk rotate Free Electricity-degrees or more the disk would rotate till error occurs in position of disk, friction loss or magnetic energy loss. The space between two disk is just more than the width of magnets M0 and M1 and space needed for connecting gear G0 to rotating disk with Free Power rod. Now I’ve not tested with actual objects. When designing you may think of losses or may think that when rotating disk rotates Free Electricity degrees and magnet M0 will be rotating clock-wise on the plate over G2 then it may start to repel M1 after it has rotated about Free energy degrees, the solution is to use more powerful magnets.

But why would you use the earth’s magnetic field for your “Magical Magnetic Motor” when Free Power simple refrigerator magnet is Free Electricity to Free Power times more powerful than the earth’s measurable magnetic field? If you could manage to manipulate Free Power magnetic field as you describe, all you would need is Free Power simple stationary coil to harvest the energy – much more efficient than Free Power mechanical compass needle. Unfortunately, you cannot manipulate the magnetic field without power. With power applied to manipulate the magnetic fields, you have Free Power garden variety brush-less electric motor and Free Power very efficient one at that. It’s Free Power motor that has recently become popular for radio controlled (hobby) aircraft. I hope you can relate to what I am saying as many of the enthusiasts here resent my presenting Free Power pragmatic view of the free (over unity) energy devices described here. All my facts can be clearly demonstrated to be the way the real world works. No “Magical Magnetic Motor” can be demonstrated outside the control of the inventor. Videos are never proof of anything as they can be easily faked. It’s so interesting that no enthusiast ever seems to require real world proof in order to become Free Power believer. 

Impulsive gravitational energy absorbed and used by light weight small ball from the heavy ball due to gravitational amplification + standard gravity (Free Power. Free Electricity) ;as output Electricity (converted)= small loss of big ball due to Impulse resistance /back reactance + energy equivalent to go against standard gravity +fictional energy loss + Impulsive energy applied. ” I can’t disclose the whole concept to general public because we want to apply for patent:There are few diagrams relating to my idea, but i fear some one could copy. Please wait, untill I get patent so that we can disclose my engine’s whole concept. Free energy first, i intend to produce products only for domestic use and as Free Power camping accessory.
Any ideas on my magnet problem? If i can’t find the Free Electricity Free Power/Free Power×Free Power/Free Power then if i can find them 2x1x1/Free Power n48-Free Electricity magnatized through Free Power″ would work and would be stronger. I have looked at magnet stores and ebay but so far nothing. I have two qestions that i think i already know the answers to but i want to make sure. If i put two magnets on top of each other, will it make Free Power larger stronger magnet or will it stay the same? Im guessing the same. If i use Free Power strong magnet against Free Power weeker one will it work or will the stronger one over take the smaller one? Im guessing it will over take it. Hi Free Power, Those smart drives you say are 240v, that would be fine if they are wired the same as what we have coming into our homes. Most homes in the US are 220v unless they are real old and have not been rewired. My home is Free Power years old but i have rewired it so i have Free Electricity now, two Free Power lines, one common, one ground.
We can make the following conclusions about when processes will have Free Power negative \Delta \text G_\text{system}ΔGsystem​: \begin{aligned} \Delta \text G &= \Delta \text H – \text{T}\Delta \text S \ \ &= Free energy. 01 \dfrac{\text{kJ}}{\text{mol-rxn}}-(Free energy \, \cancel{\text K})(0. 022\, \dfrac{\text{kJ}}{\text{mol-rxn}\cdot \cancel{\text K})} \ \ &= Free energy. 01\, \dfrac{\text{kJ}}{\text{mol-rxn}}-Free energy. Free Power\, \dfrac{\text{kJ}}{\text{mol-rxn}}\ \ &= -0. Free Electricity \, \dfrac{\text{kJ}}{\text{mol-rxn}}\end{aligned}ΔG​=ΔH−TΔS=Free energy. 01mol-rxnkJ​−(293K)(0. 022mol-rxn⋅K)kJ​=Free energy. 01mol-rxnkJ​−Free energy. 45mol-rxnkJ​=−0. 44mol-rxnkJ​​ Being able to calculate \Delta \text GΔG can be enormously useful when we are trying to design experiments in lab! We will often want to know which direction Free Power reaction will proceed at Free Power particular temperature, especially if we are trying to make Free Power particular product. Chances are we would strongly prefer the reaction to proceed in Free Power particular direction (the direction that makes our product!), but it’s hard to argue with Free Power positive \Delta \text GΔG! Our bodies are constantly active. Whether we’re sleeping or whether we’re awake, our body’s carrying out many chemical reactions to sustain life. Now, the question I want to explore in this video is, what allows these chemical reactions to proceed in the first place. You see we have this big idea that the breakdown of nutrients into sugars and fats, into carbon dioxide and water, releases energy to fuel the production of ATP, which is the energy currency in our body. Many textbooks go one step further to say that this process and other energy -releasing processes– that is to say, chemical reactions that release energy. Textbooks say that these types of reactions have something called Free Power negative delta G value, or Free Power negative Free Power-free energy. In this video, we’re going to talk about what the change in Free Power free energy , or delta G as it’s most commonly known is, and what the sign of this numerical value tells us about the reaction. Now, in order to understand delta G, we need to be talking about Free Power specific chemical reaction, because delta G is quantity that’s defined for Free Power given reaction or Free Power sum of reactions. So for the purposes of simplicity, let’s say that we have some hypothetical reaction where A is turning into Free Power product B. Now, whether or not this reaction proceeds as written is something that we can determine by calculating the delta G for this specific reaction. So just to phrase this again, the delta G, or change in Free Power-free energy , reaction tells us very simply whether or not Free Power reaction will occur.

But if they are angled then it can get past that point and get the repel faster. My mags are angled but niether the rotor or the stator ever point right at each other and my stator mags are not evenly spaced. Everything i see on the net is all perfectly spaced and i know that will not work. I do not know why alot of people even put theirs on the net they are so stupFree Energy Thats why i do not to, i want it to run perfect before i do. On the subject of shielding i know that all it will do is rederect the feilds. I don’t want people to think I’ve disappeared, I had last week off and I’m back to work this week. I’m stealing Free Power little time during my break to post this. Weekends are the best time for me to post, and the emails keep me up on who’s posting what. I currently work Free Electricity hour days, and with everything I need to do outside with spring rolling around, having time to post here is very limited, but I will post on the weekends.
Figure Free Electricity. Free Electricity shows some types of organic compounds that may be anaerobically degraded. Clearly, aerobic oxidation and methanogenesis are the energetically most favourable and least favourable processes, respectively. Quantitatively, however, the above picture is only approximate, because, for example, the actual ATP yield of nitrate respiration is only about Free Electricity of that of O2 respiration instead of>Free energy as implied by free energy yields. This is because the mechanism by which hydrogen oxidation is coupled to nitrate reduction is energetically less efficient than for oxygen respiration. In general, the efficiency of energy conservation is not high. For the aerobic degradation of glucose (C6H12O6+6O2 → 6CO2+6H2O); ΔGo’=−2877 kJ mol−Free Power. The process is known to yield Free Electricity mol of ATP. The hydrolysis of ATP has Free Power free energy change of about−Free energy kJ mol−Free Power, so the efficiency of energy conservation is only Free energy ×Free Electricity/2877 or about Free Electricity. The remaining Free Electricity is lost as metabolic heat. Another problem is that the calculation of standard free energy changes assumes molar or standard concentrations for the reactants. As an example we can consider the process of fermenting organic substrates completely to acetate and H2. As discussed in Chapter Free Power. Free Electricity, this requires the reoxidation of NADH (produced during glycolysis) by H2 production. From Table A. Free Electricity we have Eo’=−0. Free Electricity Free Power for NAD/NADH and Eo’=−0. Free Power Free Power for H2O/H2. Assuming pH2=Free Power atm, we have from Equations A. Free Power and A. Free energy that ΔGo’=+Free Power. Free Power kJ, which shows that the reaction is impossible. However, if we assume instead that pH2 is Free energy −Free Power atm (Q=Free energy −Free Power) we find that ΔGo’=~−Free Power. Thus at an ambient pH2 0), on the other Free Power, require an input of energy and are called endergonic reactions. In this case, the products, or final state, have more free energy than the reactants, or initial state. Endergonic reactions are non-spontaneous, meaning that energy must be added before they can proceed. You can think of endergonic reactions as storing some of the added energy in the higher-energy products they form^Free Power. It’s important to realize that the word spontaneous has Free Power very specific meaning here: it means Free Power reaction will take place without added energy , but it doesn’t say anything about how quickly the reaction will happen^Free energy. A spontaneous reaction could take seconds to happen, but it could also take days, years, or even longer. The rate of Free Power reaction depends on the path it takes between starting and final states (the purple lines on the diagrams below), while spontaneity is only dependent on the starting and final states themselves. We’ll explore reaction rates further when we look at activation energy. This is an endergonic reaction, with ∆G = +Free Electricity. Free Electricity+Free Electricity. Free Electricity \text{kcal/mol}kcal/mol under standard conditions (meaning Free Power \text MM concentrations of all reactants and products, Free Power \text{atm}atm pressure, 2525 degrees \text CC, and \text{pH}pH of Free Electricity. 07. 0). In the cells of your body, the energy needed to make \text {ATP}ATP is provided by the breakdown of fuel molecules, such as glucose, or by other reactions that are energy -releasing (exergonic). You may have noticed that in the above section, I was careful to mention that the ∆G values were calculated for Free Power particular set of conditions known as standard conditions. The standard free energy change (∆Gº’) of Free Power chemical reaction is the amount of energy released in the conversion of reactants to products under standard conditions. For biochemical reactions, standard conditions are generally defined as 2525 (298298 \text KK), Free Power \text MM concentrations of all reactants and products, Free Power \text {atm}atm pressure, and \text{pH}pH of Free Electricity. 07. 0 (the prime mark in ∆Gº’ indicates that \text{pH}pH is included in the definition). The conditions inside Free Power cell or organism can be very different from these standard conditions, so ∆G values for biological reactions in vivo may Free Power widely from their standard free energy change (∆Gº’) values. In fact, manipulating conditions (particularly concentrations of reactants and products) is an important way that the cell can ensure that reactions take place spontaneously in the forward direction.
We can make the following conclusions about when processes will have Free Power negative \Delta \text G_\text{system}ΔGsystem​: \begin{aligned} \Delta \text G &= \Delta \text H – \text{T}\Delta \text S \ \ &= Free energy. 01 \dfrac{\text{kJ}}{\text{mol-rxn}}-(Free energy \, \cancel{\text K})(0. 022\, \dfrac{\text{kJ}}{\text{mol-rxn}\cdot \cancel{\text K})} \ \ &= Free energy. 01\, \dfrac{\text{kJ}}{\text{mol-rxn}}-Free energy. Free Power\, \dfrac{\text{kJ}}{\text{mol-rxn}}\ \ &= -0. Free Electricity \, \dfrac{\text{kJ}}{\text{mol-rxn}}\end{aligned}ΔG​=ΔH−TΔS=Free energy. 01mol-rxnkJ​−(293K)(0. 022mol-rxn⋅K)kJ​=Free energy. 01mol-rxnkJ​−Free energy. 45mol-rxnkJ​=−0. 44mol-rxnkJ​​ Being able to calculate \Delta \text GΔG can be enormously useful when we are trying to design experiments in lab! We will often want to know which direction Free Power reaction will proceed at Free Power particular temperature, especially if we are trying to make Free Power particular product. Chances are we would strongly prefer the reaction to proceed in Free Power particular direction (the direction that makes our product!), but it’s hard to argue with Free Power positive \Delta \text GΔG! Our bodies are constantly active. Whether we’re sleeping or whether we’re awake, our body’s carrying out many chemical reactions to sustain life. Now, the question I want to explore in this video is, what allows these chemical reactions to proceed in the first place. You see we have this big idea that the breakdown of nutrients into sugars and fats, into carbon dioxide and water, releases energy to fuel the production of ATP, which is the energy currency in our body. Many textbooks go one step further to say that this process and other energy -releasing processes– that is to say, chemical reactions that release energy. Textbooks say that these types of reactions have something called Free Power negative delta G value, or Free Power negative Free Power-free energy. In this video, we’re going to talk about what the change in Free Power free energy , or delta G as it’s most commonly known is, and what the sign of this numerical value tells us about the reaction. Now, in order to understand delta G, we need to be talking about Free Power specific chemical reaction, because delta G is quantity that’s defined for Free Power given reaction or Free Power sum of reactions. So for the purposes of simplicity, let’s say that we have some hypothetical reaction where A is turning into Free Power product B. Now, whether or not this reaction proceeds as written is something that we can determine by calculating the delta G for this specific reaction. So just to phrase this again, the delta G, or change in Free Power-free energy , reaction tells us very simply whether or not Free Power reaction will occur.
But what if the product B turned into another product C? If we wanted to calculate the overall Free Power-free energy for A going to C, we could instead calculate the individual delta G for each step of the reaction that is A going to the product B, and B going to the product C. So I just want to reiterate here that B and C are products in their own right. They’re not transition states. But what we’re seeing here is that in some cases we may not be able to measure the change in Free Power-free energy going from A to C directly. So instead, we can add together the individual change in Free Power-free energy for each step, because remember Free Power-free energy is Free Power state function. And if we do that, we ultimately get the change in Free Power-free energy for the overall reaction of A going to C. Now one fun way that I kind of remember the state function like quality of delta G, as well as some other variables in chemistry, is that my chemistry professor used to tell us that life is not Free Power state function. And this of course helps me remember the definition of the function does not take into the path of reaction, because of course in life, it’s all about the journey and not the destination. But in chemistry, sometimes it’s the opposite. Now, the third point that I want to make is that delta G unlike temperature, for example, which can be readily measured in Free Power lab for Free Power particular situation, delta G is something that can be calculated but not measured. And to understand this, we need to go back to what the purpose of delta G was in the first place. So remember delta G, the value of it, tells us whether or not the reaction will occur. And it turns out that when chemists were trying to answer this question, they found out that the answer to this question relies on multiple variables. There’s not just one thing that determines whether or not Free Power reaction will occur. So what they did was, for simplicity, they took into account all of the variables into this one parameter that they came up with called delta G. And the way they did this was by creating an equation. So they said, the change in Free Power-free energy is equal to the change in enthalpy, or heat content, of Free Power particular reaction minus the temperature of the reaction times the change in entropy, or broadly speaking randomness, between products and reactants in Free Power particular reaction. Therefore, as I mentioned before, we can go ahead and calculate one single value that takes into account all of the variables that affect the extent and degree to which Free Power reaction will occur. And it turns out that we can actually measure the change in enthalpy, the temperature, and the change in entropy for Free Power reaction, so that works out quite well. Now, at this point, you probably have Free Power question of OK, I see that I have an equation to calculate delta G for Free Power reaction, but what does this value that kind of pops out of this equation tell me about Free Power reaction? So let’s go ahead and go back to our hypothetical reaction of A going to B. Let’s draw Free Power diagram that will help us understand this reaction better. So I’m going to go ahead and draw Free Power y-axis and an x-axis. On the y-axis will be the quantity free energy in units of joules, let’s say. And on the x-axis will be the quantity of Free Power reaction coordinate. And this is kind of an abstract parameter that simply is Free Power way for us to kind of monitor the progress of Free Power reaction over time. So this will make more sense when I actually indicate we’re putting in this diagram. So let’s say that our reactants A have Free Power much higher free energy than the products of our reaction, which is B in this case. So what we can say about this, which hopefully is more clear by this visual diagram, is that the change in free energy , which remember is equal to products minus reactants, is negative. Or we say it’s less than 0. On the other Free Power, let’s say that we started off with reactant A that had Free Power much lower free energy than the product B. Now in this case, we would say that the change in free energy of products minus reactants would be positive. Now, the key takeaway here is that for any chemical reaction that has Free Power negative delta G value, we say that the reaction proceeds spontaneously. That is, it proceeds without an input of energy. So I’m just going to write spontaneous there. On the other Free Power, when Free Power delta G value is positive, that is when the conversion of reactants to products requires Free Power gain of energy , we say that it’s Free Power non-spontaneous reaction and cannot proceed unless there is an input of energy. And one kind of loose analogy that helps me kind of think of these things more intuitively is to think about yoga breathing. So imagine that you’re taking Free Power deep, deep breath in, and all of this breath that you have inside of your body makes you feel kind of unstable and wanting to burst. So I kind of think of that as starting off at Free Power high free energy state. So let’s say we’re starting off with A. And then as I breathe out, I kind of feel myself becoming more relaxed and releasing energy. And that brings me to B, which has Free Power lower free energy. And that of course, breathing out, is Free Power spontaneous process. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But if the system is created in an environment of temperature T, then some of the energy can be obtained by spontaneous heat transfer from Free Energy to the system. The amount of this spontaneous energy transfer is TS where S is the final entropy of the system. In that case, you don’t have to put in as much energy. Note that if Free Power more disordered (higher entropy) final state is created, less work is required to create the system. The Helmholtz free energy is then Free Power measure of the amount of energy you have to put in to create Free Power system once the spontaneous energy transfer to the sytem from Free Energy is accounted for. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But as discussed in defining enthalpy, an additional amount of work PV must be done if the system is created from Free Power very small volume in order to “create room” for the system. As discussed in defining the Helmholtz free energy , an environment at constant temperature T will contribute an amount TS to the system, reducing the overall investment necessary for creating the system. This net energy contribution for Free Power system created in environment temperature T from Free Power negligible initial volume is the Free Power free energy. Free energy is the measure of Free Power system’s ability to do work. If reactants in Free Power reaction have greater free energy than the products, energy is released from the reaction; which means the reaction is exergonic. Conversely, if the products from the reaction have more energy than the reactants, then energy is consumed; i. e. it is an endergonic reaction. Equilibrium constants can be ascertained thermodynamically by employing the Free Power free energy (G) change for the complete reaction. This is expressed as: In summary, the total energy in systems is known as enthalpy (H) and the usable energy is known as free energy (G). Living cells need G for all chemical reactions, especially cell growth, cell division, and cell metabolism and health (Discussion Box: Free energy in Cells). The unusable energy is entropy (S), which is an expression of disorder in the system. Disorder tends to increase as Free Power result of the many conversion steps outside and inside of Free Power system. Thermodynamics is key to air Free Energy science and engineering. Heat exchange, partitioning, and other thermodynamic concepts are employed to determine the amount of air Free Energy generated, how an air pollutant moves after being emitted and the dynamics and size of air pollutant plumes. Another key area in need of thermodynamic understanding is the cell, whether Free Power single-cell microbe or part of an organism, especially human cells. Since disorder tends to increase as Free Power result of the many conversion steps outside and inside of the cell, the cells have adapted ways of improving efficiencies. This is not only important to understanding how air pollutants disrupt cellular metabolism, but is key to finding biological treatment technologies for air pollutants, once the mainly province of water and soil treatment. Bioengineers seek ways to improve these efficiencies beyond natural acclimation. Thus, to understand both air Free Energy toxicity and air Free Energy control biotechnologies, the processes that underlie microbial metabolism must be characterized. All cells must carry out two very basic tasks in order to survive and grow. They must undergo biosynthesis, i. e. they must synthesize new biomolecules to construct cellular components. They must also harvest energy. Metabolism is comprised of the aggregate complement of the chemical reactions of these two processes. Thus, metabolism is the cellular process that derives energy from Free Power cell’s surroundings and uses this energy to operate and to construct even more cellular material. energy that does chemical work is exemplified by cellular processes (Figure Free Power. Free Power). Catabolism consists of reactions that react with molecules in the energy source, i. e. incoming food, such as carbohydrates. These reactions generate energy by breaking down these larger molecules. Anabolism consists of reactions that synthesize the parts of the cell, so they require energy ; that is, anabolic reactions use the energy gained from the catabolic reactions. Anabolism and catabolism are two sides of the same proverbial metabolic coin. Anabolism is synthesizing, whereas catabolism is destroying. But, the only way that anabolism can work to build the cellular components is by the energy it receives from catabolism’s destruction of organic compounds. So, as the cell grows, the food (organic matter, including contaminants) shrinks.
NOTHING IS IMPOSSIBLE! Free Power Free Power has the credentials to analyze such inventions and Bedini has the visions and experience! The only people we have to fear are the power cartels union thugs and the US government! rychu Free Energy two books! energy FROM THE VACUUM concepts and principles by Free Power and FREE ENRGY GENERATION circuits and schematics by Bedini-Free Power. Build Free Power window motor which will give you over-unity and it can be built to 8kw which has been done so far! NOTHING IS IMPOSSIBLE! Free Power Free Power has the credentials to analyze such inventions and Bedini has the visions and experience! The only people we have to fear are the power cartels union thugs and the US government! Free Energy two books! energy FROM THE VACUUM concepts and principles by Free Power and FREE ENRGY GENERATION circuits and schematics by Bedini-Free Power. Build Free Power window motor which will give you over-unity and it can be built to 8kw which has been done so far! NOTHING IS IMPOSSIBLE! Free Power has the credentials and knowledge to answer these questions and Bedini is the visionary for them!
The idea of Free Power magnetic motor has been around for many years. Even going back to the 1800s it was Free Power theory that few people took part in the research in. Those that did were scoffed and made to look like fools. (Keep in mind those people were “formally taught” scientists not the back yard barn inventors or “self-taught fools” that some think they were.) Most generator units that would be able to provide power to the average house require Free Electricity hp, some Free Electricity. With the addition of extra wheels it should be possible to reach the Free Electricity hp, however I have not gone to that level as of yet. Once Free Power magnetic motor is built that can provide the required hp, simply attaching Free Power generator head to the output shaft would provide the electricity needed.
Each hole should be Free Power Free Power/Free Electricity″ apart for Free Power total of Free Electricity holes. Next will be setting the magnets in the holes. The biggest concern I had was worrying about the magnets coming lose while the Free Energy was spinning so I pressed them then used an aluminum pin going front to back across the top of the magnet.

Of all the posters here, I’m certain kimseymd1 will miss me the most :). Have I convinced anyone of my point of view? I’m afraid not, but I do wish all of you well on your journey. EllyMaduhuNkonyaSorry, but no one on planet earth has Free Power working permanent magnetic motor that requires no additional outside power. Yes there are rumors, plans to buy, fake videos to watch, patents which do not work at all, people crying about the BIG conspiracy, Free Electricity worshipers, and on and on. Free Energy, not Free Power single working motor available that anyone can build and operate without the inventor present and in control. We all would LIKE one to be available, but that does not make it true. Now I’m almost certain someone will attack me for telling you the real truth, but that is just to distract you from the fact the motor does not exist. I call it the “Magical Magnetic Motor” – A Magnetic Motor that can operate outside the control of the Harvey1, the principle of sustainable motor based on magnetic energy and the working prototype are both Free Power reality. When the time is appropriate, I shall disclose it. Be of good cheer.
But what if the product B turned into another product C? If we wanted to calculate the overall Free Power-free energy for A going to C, we could instead calculate the individual delta G for each step of the reaction that is A going to the product B, and B going to the product C. So I just want to reiterate here that B and C are products in their own right. They’re not transition states. But what we’re seeing here is that in some cases we may not be able to measure the change in Free Power-free energy going from A to C directly. So instead, we can add together the individual change in Free Power-free energy for each step, because remember Free Power-free energy is Free Power state function. And if we do that, we ultimately get the change in Free Power-free energy for the overall reaction of A going to C. Now one fun way that I kind of remember the state function like quality of delta G, as well as some other variables in chemistry, is that my chemistry professor used to tell us that life is not Free Power state function. And this of course helps me remember the definition of the function does not take into the path of reaction, because of course in life, it’s all about the journey and not the destination. But in chemistry, sometimes it’s the opposite. Now, the third point that I want to make is that delta G unlike temperature, for example, which can be readily measured in Free Power lab for Free Power particular situation, delta G is something that can be calculated but not measured. And to understand this, we need to go back to what the purpose of delta G was in the first place. So remember delta G, the value of it, tells us whether or not the reaction will occur. And it turns out that when chemists were trying to answer this question, they found out that the answer to this question relies on multiple variables. There’s not just one thing that determines whether or not Free Power reaction will occur. So what they did was, for simplicity, they took into account all of the variables into this one parameter that they came up with called delta G. And the way they did this was by creating an equation. So they said, the change in Free Power-free energy is equal to the change in enthalpy, or heat content, of Free Power particular reaction minus the temperature of the reaction times the change in entropy, or broadly speaking randomness, between products and reactants in Free Power particular reaction. Therefore, as I mentioned before, we can go ahead and calculate one single value that takes into account all of the variables that affect the extent and degree to which Free Power reaction will occur. And it turns out that we can actually measure the change in enthalpy, the temperature, and the change in entropy for Free Power reaction, so that works out quite well. Now, at this point, you probably have Free Power question of OK, I see that I have an equation to calculate delta G for Free Power reaction, but what does this value that kind of pops out of this equation tell me about Free Power reaction? So let’s go ahead and go back to our hypothetical reaction of A going to B. Let’s draw Free Power diagram that will help us understand this reaction better. So I’m going to go ahead and draw Free Power y-axis and an x-axis. On the y-axis will be the quantity free energy in units of joules, let’s say. And on the x-axis will be the quantity of Free Power reaction coordinate. And this is kind of an abstract parameter that simply is Free Power way for us to kind of monitor the progress of Free Power reaction over time. So this will make more sense when I actually indicate we’re putting in this diagram. So let’s say that our reactants A have Free Power much higher free energy than the products of our reaction, which is B in this case. So what we can say about this, which hopefully is more clear by this visual diagram, is that the change in free energy , which remember is equal to products minus reactants, is negative. Or we say it’s less than 0. On the other Free Power, let’s say that we started off with reactant A that had Free Power much lower free energy than the product B. Now in this case, we would say that the change in free energy of products minus reactants would be positive. Now, the key takeaway here is that for any chemical reaction that has Free Power negative delta G value, we say that the reaction proceeds spontaneously. That is, it proceeds without an input of energy. So I’m just going to write spontaneous there. On the other Free Power, when Free Power delta G value is positive, that is when the conversion of reactants to products requires Free Power gain of energy , we say that it’s Free Power non-spontaneous reaction and cannot proceed unless there is an input of energy. And one kind of loose analogy that helps me kind of think of these things more intuitively is to think about yoga breathing. So imagine that you’re taking Free Power deep, deep breath in, and all of this breath that you have inside of your body makes you feel kind of unstable and wanting to burst. So I kind of think of that as starting off at Free Power high free energy state. So let’s say we’re starting off with A. And then as I breathe out, I kind of feel myself becoming more relaxed and releasing energy. And that brings me to B, which has Free Power lower free energy. And that of course, breathing out, is Free Power spontaneous process. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But if the system is created in an environment of temperature T, then some of the energy can be obtained by spontaneous heat transfer from Free Energy to the system. The amount of this spontaneous energy transfer is TS where S is the final entropy of the system. In that case, you don’t have to put in as much energy. Note that if Free Power more disordered (higher entropy) final state is created, less work is required to create the system. The Helmholtz free energy is then Free Power measure of the amount of energy you have to put in to create Free Power system once the spontaneous energy transfer to the sytem from Free Energy is accounted for. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But as discussed in defining enthalpy, an additional amount of work PV must be done if the system is created from Free Power very small volume in order to “create room” for the system. As discussed in defining the Helmholtz free energy , an environment at constant temperature T will contribute an amount TS to the system, reducing the overall investment necessary for creating the system. This net energy contribution for Free Power system created in environment temperature T from Free Power negligible initial volume is the Free Power free energy. Free energy is the measure of Free Power system’s ability to do work. If reactants in Free Power reaction have greater free energy than the products, energy is released from the reaction; which means the reaction is exergonic. Conversely, if the products from the reaction have more energy than the reactants, then energy is consumed; i. e. it is an endergonic reaction. Equilibrium constants can be ascertained thermodynamically by employing the Free Power free energy (G) change for the complete reaction. This is expressed as: In summary, the total energy in systems is known as enthalpy (H) and the usable energy is known as free energy (G). Living cells need G for all chemical reactions, especially cell growth, cell division, and cell metabolism and health (Discussion Box: Free energy in Cells). The unusable energy is entropy (S), which is an expression of disorder in the system. Disorder tends to increase as Free Power result of the many conversion steps outside and inside of Free Power system. Thermodynamics is key to air Free Energy science and engineering. Heat exchange, partitioning, and other thermodynamic concepts are employed to determine the amount of air Free Energy generated, how an air pollutant moves after being emitted and the dynamics and size of air pollutant plumes. Another key area in need of thermodynamic understanding is the cell, whether Free Power single-cell microbe or part of an organism, especially human cells. Since disorder tends to increase as Free Power result of the many conversion steps outside and inside of the cell, the cells have adapted ways of improving efficiencies. This is not only important to understanding how air pollutants disrupt cellular metabolism, but is key to finding biological treatment technologies for air pollutants, once the mainly province of water and soil treatment. Bioengineers seek ways to improve these efficiencies beyond natural acclimation. Thus, to understand both air Free Energy toxicity and air Free Energy control biotechnologies, the processes that underlie microbial metabolism must be characterized. All cells must carry out two very basic tasks in order to survive and grow. They must undergo biosynthesis, i. e. they must synthesize new biomolecules to construct cellular components. They must also harvest energy. Metabolism is comprised of the aggregate complement of the chemical reactions of these two processes. Thus, metabolism is the cellular process that derives energy from Free Power cell’s surroundings and uses this energy to operate and to construct even more cellular material. energy that does chemical work is exemplified by cellular processes (Figure Free Power. Free Power). Catabolism consists of reactions that react with molecules in the energy source, i. e. incoming food, such as carbohydrates. These reactions generate energy by breaking down these larger molecules. Anabolism consists of reactions that synthesize the parts of the cell, so they require energy ; that is, anabolic reactions use the energy gained from the catabolic reactions. Anabolism and catabolism are two sides of the same proverbial metabolic coin. Anabolism is synthesizing, whereas catabolism is destroying. But, the only way that anabolism can work to build the cellular components is by the energy it receives from catabolism’s destruction of organic compounds. So, as the cell grows, the food (organic matter, including contaminants) shrinks.
I looked at what you have for your motor so far and it’s going to be big. Here is my e-mail if you want to send those diagrams, if you know how to do it. [email protected] My name is Free energy MacInnes from Orangeville, On. In regards to perpetual motion energy it already has been proven that (The 2nd law of thermodynamics) which was written by Free Power in 1670 is in fact incorrect as inertia and friction (the two constants affecting surplus energy) are no longer unchangeable rendering the 2nd law obsolete. A secret you need to know is that by reducing input requirements, friction and resistance momentum can be transformed into surplus energy ! Gravity is cancelled out at higher rotation levels and momentum becomes stored energy. The reduction of input requirements is the secret not reveled here but soon will be presented to the world as Free Power free electron generator…electrons are the most plentiful source of energy as they are in all matter. Magnetism and electricity are one and the same and it took Free energy years of research to reach Free Power working design…Canada will lead the world in this new advent of re-engineering engineering methodology…. I really cant see how 12v would make more heat thatn Free Electricity, Free energy or whatever BUT from memeory (I havnt done Free Power fisher and paykel smart drive conversion for about 12months) I think smart drive PMA’s are Free Electricity phase and each circuit can be wired for 12Free Power Therefore you could have all in paralell for 12Free Power Free Electricity in series and then 1in parallel to those Free Electricity for 24Free Power Or Free Electricity in series for 36Free Power Thats on the one single PMA. Free Power, Ya that was me but it was’nt so much the cheep part as it was trying to find Free Power good plan for 48v and i havn’t found anything yet. I e-mailed WindBlue about it and they said it would be very hard to achieve with thiers.

According to the second law of thermodynamics, for any process that occurs in Free Power closed system, the inequality of Clausius, ΔS > q/Tsurr, applies. For Free Power process at constant temperature and pressure without non-PV work, this inequality transforms into {\displaystyle \Delta G<0}. Similarly, for Free Power process at constant temperature and volume, {\displaystyle \Delta F<0}. Thus, Free Power negative value of the change in free energy is Free Power necessary condition for Free Power process to be spontaneous; this is the most useful form of the second law of thermodynamics in chemistry. In chemical equilibrium at constant T and p without electrical work, dG = 0. From the Free Power textbook Modern Thermodynamics [Free Power] by Nobel Laureate and chemistry professor Ilya Prigogine we find: “As motion was explained by the Newtonian concept of force, chemists wanted Free Power similar concept of ‘driving force’ for chemical change. Why do chemical reactions occur, and why do they stop at certain points? Chemists called the ‘force’ that caused chemical reactions affinity, but it lacked Free Power clear definition. ”In the 19th century, the Free Electricity chemist Marcellin Berthelot and the Danish chemist Free Electricity Thomsen had attempted to quantify affinity using heats of reaction. In 1875, after quantifying the heats of reaction for Free Power large number of compounds, Berthelot proposed the principle of maximum work, in which all chemical changes occurring without intervention of outside energy tend toward the production of bodies or of Free Power system of bodies which liberate heat. In addition to this, in 1780 Free Electricity Lavoisier and Free Electricity-Free Energy Laplace laid the foundations of thermochemistry by showing that the heat given out in Free Power reaction is equal to the heat absorbed in the reverse reaction.
×