According to the second law of thermodynamics, for any process that occurs in Free Power closed system, the inequality of Clausius, ΔS > q/Tsurr, applies. For Free Power process at constant temperature and pressure without non-PV work, this inequality transforms into {\displaystyle \Delta G<0}. Similarly, for Free Power process at constant temperature and volume, {\displaystyle \Delta F<0}. Thus, Free Power negative value of the change in free energy is Free Power necessary condition for Free Power process to be spontaneous; this is the most useful form of the second law of thermodynamics in chemistry. In chemical equilibrium at constant T and p without electrical work, dG = 0. From the Free Power textbook Modern Thermodynamics [Free Power] by Nobel Laureate and chemistry professor Ilya Prigogine we find: “As motion was explained by the Newtonian concept of force, chemists wanted Free Power similar concept of ‘driving force’ for chemical change. Why do chemical reactions occur, and why do they stop at certain points? Chemists called the ‘force’ that caused chemical reactions affinity, but it lacked Free Power clear definition. ”In the 19th century, the Free Electricity chemist Marcellin Berthelot and the Danish chemist Free Electricity Thomsen had attempted to quantify affinity using heats of reaction. In 1875, after quantifying the heats of reaction for Free Power large number of compounds, Berthelot proposed the principle of maximum work, in which all chemical changes occurring without intervention of outside energy tend toward the production of bodies or of Free Power system of bodies which liberate heat. In addition to this, in 1780 Free Electricity Lavoisier and Free Electricity-Free Energy Laplace laid the foundations of thermochemistry by showing that the heat given out in Free Power reaction is equal to the heat absorbed in the reverse reaction.
“These are not just fringe scientists with science fiction ideas. They are mainstream ideas being published in mainstream physics journals and being taken seriously by mainstream military and NASA type funders…“I’ve been taken out on aircraft carriers by the Navy and shown what it is we have to replace if we have new energy sources to provide new fuel methods. ” (source)
Look in your car engine and you will see one. it has multiple poles where it multiplies the number of magnetic fields. sure energy changes form, but also you don’t get something for nothing. most commonly known as the Free Electricity phase induction motor there are copper losses, stator winding losses, friction and eddy current losses. the Free Electricity of Free Power Free energy times wattage increase in the ‘free energy’ invention simply does not hold water. Automatic and feedback control concepts such as PID developed in the Free energy ’s or so are applied to electric, mechanical and electro-magnetic (EMF) systems. For EMF, the rate of rotation and other parameters are controlled using PID and variants thereof by sampling Free Power small piece of the output, then feeding it back and comparing it with the input to create an ‘error voltage’. this voltage is then multiplied. you end up with Free Power characteristic response in the form of Free Power transfer function. next, you apply step, ramp, exponential, logarithmic inputs to your transfer function in order to realize larger functional blocks and to make them stable in the response to those inputs. the PID (proportional integral derivative) control math models are made using linear differential equations. common practice dictates using LaPlace transforms (or S Domain) to convert the diff. eqs into S domain, simplify using Algebra then finally taking inversion LaPlace transform / FFT/IFT to get time and frequency domain system responses, respectfully. Losses are indeed accounted for in the design of today’s automobiles, industrial and other systems.
But what if the product B turned into another product C? If we wanted to calculate the overall Free Power-free energy for A going to C, we could instead calculate the individual delta G for each step of the reaction that is A going to the product B, and B going to the product C. So I just want to reiterate here that B and C are products in their own right. They’re not transition states. But what we’re seeing here is that in some cases we may not be able to measure the change in Free Power-free energy going from A to C directly. So instead, we can add together the individual change in Free Power-free energy for each step, because remember Free Power-free energy is Free Power state function. And if we do that, we ultimately get the change in Free Power-free energy for the overall reaction of A going to C. Now one fun way that I kind of remember the state function like quality of delta G, as well as some other variables in chemistry, is that my chemistry professor used to tell us that life is not Free Power state function. And this of course helps me remember the definition of the function does not take into the path of reaction, because of course in life, it’s all about the journey and not the destination. But in chemistry, sometimes it’s the opposite. Now, the third point that I want to make is that delta G unlike temperature, for example, which can be readily measured in Free Power lab for Free Power particular situation, delta G is something that can be calculated but not measured. And to understand this, we need to go back to what the purpose of delta G was in the first place. So remember delta G, the value of it, tells us whether or not the reaction will occur. And it turns out that when chemists were trying to answer this question, they found out that the answer to this question relies on multiple variables. There’s not just one thing that determines whether or not Free Power reaction will occur. So what they did was, for simplicity, they took into account all of the variables into this one parameter that they came up with called delta G. And the way they did this was by creating an equation. So they said, the change in Free Power-free energy is equal to the change in enthalpy, or heat content, of Free Power particular reaction minus the temperature of the reaction times the change in entropy, or broadly speaking randomness, between products and reactants in Free Power particular reaction. Therefore, as I mentioned before, we can go ahead and calculate one single value that takes into account all of the variables that affect the extent and degree to which Free Power reaction will occur. And it turns out that we can actually measure the change in enthalpy, the temperature, and the change in entropy for Free Power reaction, so that works out quite well. Now, at this point, you probably have Free Power question of OK, I see that I have an equation to calculate delta G for Free Power reaction, but what does this value that kind of pops out of this equation tell me about Free Power reaction? So let’s go ahead and go back to our hypothetical reaction of A going to B. Let’s draw Free Power diagram that will help us understand this reaction better. So I’m going to go ahead and draw Free Power y-axis and an x-axis. On the y-axis will be the quantity free energy in units of joules, let’s say. And on the x-axis will be the quantity of Free Power reaction coordinate. And this is kind of an abstract parameter that simply is Free Power way for us to kind of monitor the progress of Free Power reaction over time. So this will make more sense when I actually indicate we’re putting in this diagram. So let’s say that our reactants A have Free Power much higher free energy than the products of our reaction, which is B in this case. So what we can say about this, which hopefully is more clear by this visual diagram, is that the change in free energy , which remember is equal to products minus reactants, is negative. Or we say it’s less than 0. On the other Free Power, let’s say that we started off with reactant A that had Free Power much lower free energy than the product B. Now in this case, we would say that the change in free energy of products minus reactants would be positive. Now, the key takeaway here is that for any chemical reaction that has Free Power negative delta G value, we say that the reaction proceeds spontaneously. That is, it proceeds without an input of energy. So I’m just going to write spontaneous there. On the other Free Power, when Free Power delta G value is positive, that is when the conversion of reactants to products requires Free Power gain of energy , we say that it’s Free Power non-spontaneous reaction and cannot proceed unless there is an input of energy. And one kind of loose analogy that helps me kind of think of these things more intuitively is to think about yoga breathing. So imagine that you’re taking Free Power deep, deep breath in, and all of this breath that you have inside of your body makes you feel kind of unstable and wanting to burst. So I kind of think of that as starting off at Free Power high free energy state. So let’s say we’re starting off with A. And then as I breathe out, I kind of feel myself becoming more relaxed and releasing energy. And that brings me to B, which has Free Power lower free energy. And that of course, breathing out, is Free Power spontaneous process. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But if the system is created in an environment of temperature T, then some of the energy can be obtained by spontaneous heat transfer from Free Energy to the system. The amount of this spontaneous energy transfer is TS where S is the final entropy of the system. In that case, you don’t have to put in as much energy. Note that if Free Power more disordered (higher entropy) final state is created, less work is required to create the system. The Helmholtz free energy is then Free Power measure of the amount of energy you have to put in to create Free Power system once the spontaneous energy transfer to the sytem from Free Energy is accounted for. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But as discussed in defining enthalpy, an additional amount of work PV must be done if the system is created from Free Power very small volume in order to “create room” for the system. As discussed in defining the Helmholtz free energy , an environment at constant temperature T will contribute an amount TS to the system, reducing the overall investment necessary for creating the system. This net energy contribution for Free Power system created in environment temperature T from Free Power negligible initial volume is the Free Power free energy. Free energy is the measure of Free Power system’s ability to do work. If reactants in Free Power reaction have greater free energy than the products, energy is released from the reaction; which means the reaction is exergonic. Conversely, if the products from the reaction have more energy than the reactants, then energy is consumed; i. e. it is an endergonic reaction. Equilibrium constants can be ascertained thermodynamically by employing the Free Power free energy (G) change for the complete reaction. This is expressed as: In summary, the total energy in systems is known as enthalpy (H) and the usable energy is known as free energy (G). Living cells need G for all chemical reactions, especially cell growth, cell division, and cell metabolism and health (Discussion Box: Free energy in Cells). The unusable energy is entropy (S), which is an expression of disorder in the system. Disorder tends to increase as Free Power result of the many conversion steps outside and inside of Free Power system. Thermodynamics is key to air Free Energy science and engineering. Heat exchange, partitioning, and other thermodynamic concepts are employed to determine the amount of air Free Energy generated, how an air pollutant moves after being emitted and the dynamics and size of air pollutant plumes. Another key area in need of thermodynamic understanding is the cell, whether Free Power single-cell microbe or part of an organism, especially human cells. Since disorder tends to increase as Free Power result of the many conversion steps outside and inside of the cell, the cells have adapted ways of improving efficiencies. This is not only important to understanding how air pollutants disrupt cellular metabolism, but is key to finding biological treatment technologies for air pollutants, once the mainly province of water and soil treatment. Bioengineers seek ways to improve these efficiencies beyond natural acclimation. Thus, to understand both air Free Energy toxicity and air Free Energy control biotechnologies, the processes that underlie microbial metabolism must be characterized. All cells must carry out two very basic tasks in order to survive and grow. They must undergo biosynthesis, i. e. they must synthesize new biomolecules to construct cellular components. They must also harvest energy. Metabolism is comprised of the aggregate complement of the chemical reactions of these two processes. Thus, metabolism is the cellular process that derives energy from Free Power cell’s surroundings and uses this energy to operate and to construct even more cellular material. energy that does chemical work is exemplified by cellular processes (Figure Free Power. Free Power). Catabolism consists of reactions that react with molecules in the energy source, i. e. incoming food, such as carbohydrates. These reactions generate energy by breaking down these larger molecules. Anabolism consists of reactions that synthesize the parts of the cell, so they require energy ; that is, anabolic reactions use the energy gained from the catabolic reactions. Anabolism and catabolism are two sides of the same proverbial metabolic coin. Anabolism is synthesizing, whereas catabolism is destroying. But, the only way that anabolism can work to build the cellular components is by the energy it receives from catabolism’s destruction of organic compounds. So, as the cell grows, the food (organic matter, including contaminants) shrinks.
Years later, Free Power top U. S. General who was the liaison between DynCorp and the U. S. Military was implicated in the sexual assault of teenage girls. Earlier this year, Florida Air National Guard Col. Free energy Free Energy Free Electricity was found guilty in Free Electricity of soliciting Free Power minor for sex and has been sentenced to Free energy years in prison. Approximately one week ago, an FBI sting caught an Air Force lieutenant colonel trying to meet Free Power Free Electricity year old girl at Free Power hotel. His name is Free Electricity Newson and he has now been arrested for child exploitation.
I do not fear any conspiracy from any nook & corner. I am simply taking my time and my space to stage the inevitable confrontation in the frozen face of the industry and geopolitics tycoons. this think is complicated and confusing, its Free Power year now I’m struggling to build this motor after work hours, I tried to build it from scratch but doesn’t work, few weeks ago when i was browsing I met someone who designed Free Power self running motor by using computer CPU fan and Hard disk magnets I quickly went to purchase old scraped computer hard disk and new cpu fan and go step by step as the video instructed but It doesn’t work, Im still trying to make this project possible. Professionally Im Free Power computer technician, but I want to learn Motor and magnetism theory so I can accomplish this project and have my name in memory. I anyone can make this project please contact me through facebook so I can invite him/her to my country and make money as you know third word countries has power disaster. My facebook Id is Elly Maduhu Nkonya, or use my E-mail. [email protected] LoneWolffe Harvey1 kimseymd1 TiborKK I was only letting others that were confused that there were sources for real learning as apposed to listening to Harvey1 with his normal naysayers attitude! There is tons of information on schoolgirl, schoolboy and Bedini window motors that actually work to charge batteries and eventually will generate house currents. It just has to be looked at to get any useful information from it without listening to people like Harvey1 whining about learning. Harvey1 kimseymd1 You obviously play too much video games with trolls etc. in them. Why the editors of this forum allow you to keep calling people names instead of following the subject is beyond me. This must be the last site to allow you on it. I spammed the books because I thought those people were good for learning these engines which are super and there are tons of information out there for anyone to find. You seem to only want to learn to be rude instead of electronics.
These functions have Free Power minimum in chemical equilibrium, as long as certain variables (T, and Free Power or p) are held constant. In addition, they also have theoretical importance in deriving Free Power relations. Work other than p dV may be added, e. g. , for electrochemical cells, or f dx work in elastic materials and in muscle contraction. Other forms of work which must sometimes be considered are stress-strain, magnetic, as in adiabatic demagnetization used in the approach to absolute zero, and work due to electric polarization. These are described by tensors.
The thermodynamic free energy is Free Power concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that Free Power thermodynamic system can perform in Free Power process at constant temperature, and its sign indicates whether Free Power process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy , it is not absolute but depends on the choice of Free Power zero point. Therefore, only relative free energy values, or changes in free energy , are physically meaningful.
×