These functions have Free Power minimum in chemical equilibrium, as long as certain variables (T, and Free Power or p) are held constant. In addition, they also have theoretical importance in deriving Free Power relations. Work other than p dV may be added, e. g. , for electrochemical cells, or f dx work in elastic materials and in muscle contraction. Other forms of work which must sometimes be considered are stress-strain, magnetic, as in adiabatic demagnetization used in the approach to absolute zero, and work due to electric polarization. These are described by tensors.
Free energy is that portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i. e. , work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [Free Power] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.
×