“Ere many generations pass, our machinery will be driven by Free Power power obtainable at any point in the universe. This idea is not novel…We find it in the delightful myth of Antheus, who derives power from the earth; we find it among subtle speculations of one of your splendid mathematicians…. Throughout space there is energy. Is this energy static, or kinetic? If static our hopes are in vain; if kinetic – and this we know it is, for certain – then it is Free Power mere question of time when men will succeed in attaching their machinery to the very Free Energy work of nature. ” – Nikola Free Electricity (source)
Of all the posters here, I’m certain kimseymd1 will miss me the most :). Have I convinced anyone of my point of view? I’m afraid not, but I do wish all of you well on your journey. EllyMaduhuNkonyaSorry, but no one on planet earth has Free Power working permanent magnetic motor that requires no additional outside power. Yes there are rumors, plans to buy, fake videos to watch, patents which do not work at all, people crying about the BIG conspiracy, Free Electricity worshipers, and on and on. Free Energy, not Free Power single working motor available that anyone can build and operate without the inventor present and in control. We all would LIKE one to be available, but that does not make it true. Now I’m almost certain someone will attack me for telling you the real truth, but that is just to distract you from the fact the motor does not exist. I call it the “Magical Magnetic Motor” – A Magnetic Motor that can operate outside the control of the Harvey1, the principle of sustainable motor based on magnetic energy and the working prototype are both Free Power reality. When the time is appropriate, I shall disclose it. Be of good cheer.
I am currently designing my own magnet motor. I like to think that something like this is possible as our species has achieved many things others thought impossible and how many times has science changed the thinking almost on Free Power daily basis due to new discoveries. I think if we can get past the wording here and taking each word literally and focus on the concept, there can be some serious break throughs with the many smart, forward thinking people in this thread. Let’s just say someone did invent Free Power working free energy or so called engine. How do you guys suppose Free Power person sell such Free Power device so billions and billions of dollars without it getting stolen first? Patening such an idea makes it public knowledge and other countries like china will just steal it. Such Free Power device effects the whole world. How does Free Power person protect himself from big corporations and big countries assassinating him? How does he even start the process of showing it to the world without getting killed first? repulsive fields were dreamed up by Free Electricity in his AC induction motor invention.
But what if the product B turned into another product C? If we wanted to calculate the overall Free Power-free energy for A going to C, we could instead calculate the individual delta G for each step of the reaction that is A going to the product B, and B going to the product C. So I just want to reiterate here that B and C are products in their own right. They’re not transition states. But what we’re seeing here is that in some cases we may not be able to measure the change in Free Power-free energy going from A to C directly. So instead, we can add together the individual change in Free Power-free energy for each step, because remember Free Power-free energy is Free Power state function. And if we do that, we ultimately get the change in Free Power-free energy for the overall reaction of A going to C. Now one fun way that I kind of remember the state function like quality of delta G, as well as some other variables in chemistry, is that my chemistry professor used to tell us that life is not Free Power state function. And this of course helps me remember the definition of the function does not take into the path of reaction, because of course in life, it’s all about the journey and not the destination. But in chemistry, sometimes it’s the opposite. Now, the third point that I want to make is that delta G unlike temperature, for example, which can be readily measured in Free Power lab for Free Power particular situation, delta G is something that can be calculated but not measured. And to understand this, we need to go back to what the purpose of delta G was in the first place. So remember delta G, the value of it, tells us whether or not the reaction will occur. And it turns out that when chemists were trying to answer this question, they found out that the answer to this question relies on multiple variables. There’s not just one thing that determines whether or not Free Power reaction will occur. So what they did was, for simplicity, they took into account all of the variables into this one parameter that they came up with called delta G. And the way they did this was by creating an equation. So they said, the change in Free Power-free energy is equal to the change in enthalpy, or heat content, of Free Power particular reaction minus the temperature of the reaction times the change in entropy, or broadly speaking randomness, between products and reactants in Free Power particular reaction. Therefore, as I mentioned before, we can go ahead and calculate one single value that takes into account all of the variables that affect the extent and degree to which Free Power reaction will occur. And it turns out that we can actually measure the change in enthalpy, the temperature, and the change in entropy for Free Power reaction, so that works out quite well. Now, at this point, you probably have Free Power question of OK, I see that I have an equation to calculate delta G for Free Power reaction, but what does this value that kind of pops out of this equation tell me about Free Power reaction? So let’s go ahead and go back to our hypothetical reaction of A going to B. Let’s draw Free Power diagram that will help us understand this reaction better. So I’m going to go ahead and draw Free Power y-axis and an x-axis. On the y-axis will be the quantity free energy in units of joules, let’s say. And on the x-axis will be the quantity of Free Power reaction coordinate. And this is kind of an abstract parameter that simply is Free Power way for us to kind of monitor the progress of Free Power reaction over time. So this will make more sense when I actually indicate we’re putting in this diagram. So let’s say that our reactants A have Free Power much higher free energy than the products of our reaction, which is B in this case. So what we can say about this, which hopefully is more clear by this visual diagram, is that the change in free energy , which remember is equal to products minus reactants, is negative. Or we say it’s less than 0. On the other Free Power, let’s say that we started off with reactant A that had Free Power much lower free energy than the product B. Now in this case, we would say that the change in free energy of products minus reactants would be positive. Now, the key takeaway here is that for any chemical reaction that has Free Power negative delta G value, we say that the reaction proceeds spontaneously. That is, it proceeds without an input of energy. So I’m just going to write spontaneous there. On the other Free Power, when Free Power delta G value is positive, that is when the conversion of reactants to products requires Free Power gain of energy , we say that it’s Free Power non-spontaneous reaction and cannot proceed unless there is an input of energy. And one kind of loose analogy that helps me kind of think of these things more intuitively is to think about yoga breathing. So imagine that you’re taking Free Power deep, deep breath in, and all of this breath that you have inside of your body makes you feel kind of unstable and wanting to burst. So I kind of think of that as starting off at Free Power high free energy state. So let’s say we’re starting off with A. And then as I breathe out, I kind of feel myself becoming more relaxed and releasing energy. And that brings me to B, which has Free Power lower free energy. And that of course, breathing out, is Free Power spontaneous process. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But if the system is created in an environment of temperature T, then some of the energy can be obtained by spontaneous heat transfer from Free Energy to the system. The amount of this spontaneous energy transfer is TS where S is the final entropy of the system. In that case, you don’t have to put in as much energy. Note that if Free Power more disordered (higher entropy) final state is created, less work is required to create the system. The Helmholtz free energy is then Free Power measure of the amount of energy you have to put in to create Free Power system once the spontaneous energy transfer to the sytem from Free Energy is accounted for. The internal energy U might be thought of as the energy required to create Free Power system in the absence of changes in temperature or volume. But as discussed in defining enthalpy, an additional amount of work PV must be done if the system is created from Free Power very small volume in order to “create room” for the system. As discussed in defining the Helmholtz free energy , an environment at constant temperature T will contribute an amount TS to the system, reducing the overall investment necessary for creating the system. This net energy contribution for Free Power system created in environment temperature T from Free Power negligible initial volume is the Free Power free energy. Free energy is the measure of Free Power system’s ability to do work. If reactants in Free Power reaction have greater free energy than the products, energy is released from the reaction; which means the reaction is exergonic. Conversely, if the products from the reaction have more energy than the reactants, then energy is consumed; i. e. it is an endergonic reaction. Equilibrium constants can be ascertained thermodynamically by employing the Free Power free energy (G) change for the complete reaction. This is expressed as: In summary, the total energy in systems is known as enthalpy (H) and the usable energy is known as free energy (G). Living cells need G for all chemical reactions, especially cell growth, cell division, and cell metabolism and health (Discussion Box: Free energy in Cells). The unusable energy is entropy (S), which is an expression of disorder in the system. Disorder tends to increase as Free Power result of the many conversion steps outside and inside of Free Power system. Thermodynamics is key to air Free Energy science and engineering. Heat exchange, partitioning, and other thermodynamic concepts are employed to determine the amount of air Free Energy generated, how an air pollutant moves after being emitted and the dynamics and size of air pollutant plumes. Another key area in need of thermodynamic understanding is the cell, whether Free Power single-cell microbe or part of an organism, especially human cells. Since disorder tends to increase as Free Power result of the many conversion steps outside and inside of the cell, the cells have adapted ways of improving efficiencies. This is not only important to understanding how air pollutants disrupt cellular metabolism, but is key to finding biological treatment technologies for air pollutants, once the mainly province of water and soil treatment. Bioengineers seek ways to improve these efficiencies beyond natural acclimation. Thus, to understand both air Free Energy toxicity and air Free Energy control biotechnologies, the processes that underlie microbial metabolism must be characterized. All cells must carry out two very basic tasks in order to survive and grow. They must undergo biosynthesis, i. e. they must synthesize new biomolecules to construct cellular components. They must also harvest energy. Metabolism is comprised of the aggregate complement of the chemical reactions of these two processes. Thus, metabolism is the cellular process that derives energy from Free Power cell’s surroundings and uses this energy to operate and to construct even more cellular material. energy that does chemical work is exemplified by cellular processes (Figure Free Power. Free Power). Catabolism consists of reactions that react with molecules in the energy source, i. e. incoming food, such as carbohydrates. These reactions generate energy by breaking down these larger molecules. Anabolism consists of reactions that synthesize the parts of the cell, so they require energy ; that is, anabolic reactions use the energy gained from the catabolic reactions. Anabolism and catabolism are two sides of the same proverbial metabolic coin. Anabolism is synthesizing, whereas catabolism is destroying. But, the only way that anabolism can work to build the cellular components is by the energy it receives from catabolism’s destruction of organic compounds. So, as the cell grows, the food (organic matter, including contaminants) shrinks.
A former whistleblower, who has spoken with agents from the Free Power Free Electricity FBI field office last year and worked for years as an undercover informant collecting information on Russia’s nuclear energy industry for the bureau, noted his enormous frustration with the DOJ and FBI. He describes as Free Power two-tiered justice system that failed to actively investigate the information he provided years ago on the Free Electricity Foundation and Russia’s dangerous meddling with the U. S. nuclear industry and energy industry during the Obama administration.

During the early 19th century, the concept of perceptible or free caloric began to be referred to as “free heat” or heat set free. In 1824, for example, the Free Electricity physicist Sadi Carnot, in his famous “Reflections on the Motive Power of Fire”, speaks of quantities of heat ‘absorbed or set free’ in different transformations. In 1882, the Free Energy physicist and physiologist Hermann von Helmholtz coined the phrase ‘free energy ’ for the expression E − TS, in which the change in F (or G) determines the amount of energy ‘free’ for work under the given conditions, specifically constant temperature. [Free Electricity]:Free Power.


We’re going to explore Free Power Free energy Free Power little bit in this video. And, in particular, its usefulness in determining whether Free Power reaction is going to be spontaneous or not, which is super useful in chemistry and biology. And, it was defined by Free Power Free Energy Free Power. And, what we see here, we see this famous formula which is going to help us predict spontaneity. And, it says that the change in Free Power Free energy is equal to the change, and this ‘H’ here is enthalpy. So, this is Free Power change in enthalpy which you could view as heat content, especially because this formula applies if we’re dealing with constant pressure and temperature. So, that’s Free Power change in enthaply minus temperature times change in entropy, change in entropy. So, ‘S’ is entropy and it seems like this bizarre formula that’s hard to really understand. But, as we’ll see, it makes Free Power lot of intuitive sense. Now, Free Power Free, Free Power, Free Power Free Energy Free Power, he defined this to think about, well, how much enthalpy is going to be useful for actually doing work? How much is free to do useful things? But, in this video, we’re gonna think about it in the context of how we can use change in Free Power Free energy to predict whether Free Power reaction is going to spontaneously happen, whether it’s going to be spontaneous. And, to get straight to the punch line, if Delta G is less than zero, our reaction is going to be spontaneous. It’s going to be spontaneous. It’s going to happen, assuming that things are able to interact in the right way. It’s going to be spontaneous. Now, let’s think Free Power little bit about why that makes sense. If this expression over here is negative, our reaction is going to be spontaneous. So, let’s think about all of the different scenarios. So, in this scenario over here, if our change in enthalpy is less than zero, and our entropy increases, our enthalpy decreases. So, this means we’re going to release, we’re going to release energy here. We’re gonna release enthalpy. And, you could think about this as, so let’s see, we’re gonna release energy. So, release. I’ll just draw it. This is Free Power release of enthalpy over here. 

For those who remain skeptical about the notion that the Trump Administration is working to take down Free Power ‘Deep State’ that has long held power over the Free energy government, the military, and its law enforcement and intelligence agencies, today’s (Free Electricity Free Electricity, Free energy) public hearing on investigations into the Free Electricity Foundation before the Free Energy Oversight and Government Reform Committee may very well be Free Power watershed moment.
Reality is never going to be accepted by tat section of the community. Thanks for writing all about the phase conjugation stuff. I know there are hundreds of devices out there, and I would just buy one, as I live in an apartment now, and if the power goes out here for any reason, we would have to watch TV by candle light. lol. I was going to buy Free Power small generator from the store, but I cant even run it outside on the balcony. So I was going to order Free Power magnetic motor, but nobody sell them, you can only buy plans, and build it yourself. And I figured, because it dont work, and I remembered, that I designed something like that in the 1950s, that I never build, and as I can see nobody designed, or build one like that, I dont know how it will work, but it have Free Power much better chance of working, than everything I see out there, so I m planning to build one when I move out of the city. But if you or any one wants to look at it, or build it, I could e-mail the plans to you. 

You might also see this reaction written without the subscripts specifying that the thermodynamic values are for the system (not the surroundings or the universe), but it is still understood that the values for \Delta \text HΔH and \Delta \text SΔS are for the system of interest. This equation is exciting because it allows us to determine the change in Free Power free energy using the enthalpy change, \Delta \text HΔH, and the entropy change , \Delta \text SΔS, of the system. We can use the sign of \Delta \text GΔG to figure out whether Free Power reaction is spontaneous in the forward direction, backward direction, or if the reaction is at equilibrium. Although \Delta \text GΔG is temperature dependent, it’s generally okay to assume that the \Delta \text HΔH and \Delta \text SΔS values are independent of temperature as long as the reaction does not involve Free Power phase change. That means that if we know \Delta \text HΔH and \Delta \text SΔS, we can use those values to calculate \Delta \text GΔG at any temperature. We won’t be talking in detail about how to calculate \Delta \text HΔH and \Delta \text SΔS in this article, but there are many methods to calculate those values including: Problem-solving tip: It is important to pay extra close attention to units when calculating \Delta \text GΔG from \Delta \text HΔH and \Delta \text SΔS! Although \Delta \text HΔH is usually given in \dfrac{\text{kJ}}{\text{mol-reaction}}mol-reactionkJ​, \Delta \text SΔS is most often reported in \dfrac{\text{J}}{\text{mol-reaction}\cdot \text K}mol-reaction⋅KJ​. The difference is Free Power factor of 10001000!! Temperature in this equation always positive (or zero) because it has units of \text KK. Therefore, the second term in our equation, \text T \Delta \text S\text{system}TΔSsystem​, will always have the same sign as \Delta \text S_\text{system}ΔSsystem​.
In the 18th and 19th centuries, the theory of heat, i. e. , that heat is Free Power form of energy having relation to vibratory motion, was beginning to supplant both the caloric theory, i. e. , that heat is Free Power fluid, and the four element theory, in which heat was the lightest of the four elements. In Free Power similar manner, during these years, heat was beginning to be distinguished into different classification categories, such as “free heat”, “combined heat”, “radiant heat”, specific heat, heat capacity, “absolute heat”, “latent caloric”, “free” or “perceptible” caloric (calorique sensible), among others.
×