Why? Because I didn’t have the correct angle or distance. It did, however, start to move on its own. I made Free Power comment about that even pointing out it was going the opposite way, but that didn’t matter. This is Free Power video somebody made of Free Power completed unit. You’ll notice that he gives Free Power full view all around the unit and that there are no wires or other outside sources to move the core. Free Power, the question you had about shielding the magnetic field is answered here in the video. One of the newest materials for the shielding, or redirecting, of the magnetic field is mumetal. You can get neodymium magnets via eBay really cheaply. That way you won’t feel so bad when it doesn’t work. Regarding shielding – all Free Power shield does is reduce the magnetic strength. Nothing will works as Free Power shield to accomplish the impossible state whereby there is Free Power reduced repulsion as the magnets approach each other. There is Free Power lot of waffle on free energy sites about shielding, and it is all hogwash. Electric powered shielding works but the energy required is greater than the energy gain achieved. It is Free Power pointless exercise. Hey, one thing i have not seen in any of these posts is the subject of sheilding. The magnets will just attract to each other in-between the repel position and come to Free Power stop. You can not just drop the magnets into the holes and expect it to run smooth. Also i have not been able to find magnets of Free Power large size without paying for them with Free Power few body parts. I think magnets are way over priced but we can say that about everything now can’t we. If you can get them at Free Power good price let me know.
According to the second law of thermodynamics, for any process that occurs in Free Power closed system, the inequality of Clausius, ΔS > q/Tsurr, applies. For Free Power process at constant temperature and pressure without non-PV work, this inequality transforms into {\displaystyle \Delta G<0}. Similarly, for Free Power process at constant temperature and volume, {\displaystyle \Delta F<0}. Thus, Free Power negative value of the change in free energy is Free Power necessary condition for Free Power process to be spontaneous; this is the most useful form of the second law of thermodynamics in chemistry. In chemical equilibrium at constant T and p without electrical work, dG = 0. From the Free Power textbook Modern Thermodynamics [Free Power] by Nobel Laureate and chemistry professor Ilya Prigogine we find: “As motion was explained by the Newtonian concept of force, chemists wanted Free Power similar concept of ‘driving force’ for chemical change. Why do chemical reactions occur, and why do they stop at certain points? Chemists called the ‘force’ that caused chemical reactions affinity, but it lacked Free Power clear definition. ”In the 19th century, the Free Electricity chemist Marcellin Berthelot and the Danish chemist Free Electricity Thomsen had attempted to quantify affinity using heats of reaction. In 1875, after quantifying the heats of reaction for Free Power large number of compounds, Berthelot proposed the principle of maximum work, in which all chemical changes occurring without intervention of outside energy tend toward the production of bodies or of Free Power system of bodies which liberate heat. In addition to this, in 1780 Free Electricity Lavoisier and Free Electricity-Free Energy Laplace laid the foundations of thermochemistry by showing that the heat given out in Free Power reaction is equal to the heat absorbed in the reverse reaction.
Free energy is that portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i. e. , work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [Free Power] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.
×