Air Free Energy biotechnology takes advantage of these two metabolic functions, depending on the microbial biodegradability of various organic substrates. The microbes in Free Power biofilter, for example, use the organic compounds as their exclusive source of energy (catabolism) and their sole source of carbon (anabolism). These life processes degrade the pollutants (Figure Free Power. Free energy). Microbes, e. g. algae, bacteria, and fungi, are essentially miniature and efficient chemical factories that mediate reactions at various rates (kinetics) until they reach equilibrium. These “simple” organisms (and the cells within complex organisms alike) need to transfer energy from one site to another to power their machinery needed to stay alive and reproduce. Microbes play Free Power large role in degrading pollutants, whether in natural attenuation, where the available microbial populations adapt to the hazardous wastes as an energy source, or in engineered systems that do the same in Free Power more highly concentrated substrate (Table Free Power. Free Electricity). Some of the biotechnological manipulation of microbes is aimed at enhancing their energy use, or targeting the catabolic reactions toward specific groups of food, i. e. organic compounds. Thus, free energy dictates metabolic processes and biological treatment benefits by selecting specific metabolic pathways to degrade compounds. This occurs in Free Power step-wise progression after the cell comes into contact with the compound. The initial compound, i. e. the parent, is converted into intermediate molecules by the chemical reactions and energy exchanges shown in Figures Free Power. Free Power and Free Power. Free Power. These intermediate compounds, as well as the ultimate end products can serve as precursor metabolites. The reactions along the pathway depend on these precursors, electron carriers, the chemical energy , adenosine triphosphate (ATP), and organic catalysts (enzymes). The reactant and product concentrations and environmental conditions, especially pH of the substrate, affect the observed ΔG∗ values. If Free Power reaction’s ΔG∗ is Free Power negative value, the free energy is released and the reaction will occur spontaneously, and the reaction is exergonic. If Free Power reaction’s ΔG∗ is positive, the reaction will not occur spontaneously. However, the reverse reaction will take place, and the reaction is endergonic. Time and energy are limiting factors that determine whether Free Power microbe can efficiently mediate Free Power chemical reaction, so catalytic processes are usually needed. Since an enzyme is Free Power biological catalyst, these compounds (proteins) speed up the chemical reactions of degradation without themselves being used up.
The thermodynamic free energy is Free Power concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that Free Power thermodynamic system can perform in Free Power process at constant temperature, and its sign indicates whether Free Power process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy , it is not absolute but depends on the choice of Free Power zero point. Therefore, only relative free energy values, or changes in free energy , are physically meaningful.