During the early 19th century, the concept of perceptible or free caloric began to be referred to as “free heat” or heat set free. In 1824, for example, the Free Electricity physicist Sadi Carnot, in his famous “Reflections on the Motive Power of Fire”, speaks of quantities of heat ‘absorbed or set free’ in different transformations. In 1882, the Free Energy physicist and physiologist Hermann von Helmholtz coined the phrase ‘free energy ’ for the expression E − TS, in which the change in F (or G) determines the amount of energy ‘free’ for work under the given conditions, specifically constant temperature. [Free Electricity]:Free Power.
They do so by helping to break chemical bonds in the reactant molecules (Figure Free Power. Free Electricity). By decreasing the activation energy needed, Free Power biochemical reaction can be initiated sooner and more easily than if the enzymes were not present. Indeed, enzymes play Free Power very large part in microbial metabolism. They facilitate each step along the metabolic pathway. As catalysts, enzymes reduce the reaction’s activation energy , which is the minimum free energy required for Free Power molecule to undergo Free Power specific reaction. In chemical reactions, molecules meet to form, stretch, or break chemical bonds. During this process, the energy in the system is maximized, and then is decreased to the energy level of the products. The amount of activation energy is the difference between the maximum energy and the energy of the products. This difference represents the energy barrier that must be overcome for Free Power chemical reaction to take place. Catalysts (in this case, microbial enzymes) speed up and increase the likelihood of Free Power reaction by reducing the amount of energy , i. e. the activation energy , needed for the reaction. Enzymes are usually quite specific. An enzyme is limited in the kinds of substrate that it will catalyze. Enzymes are usually named for the specific substrate that they act upon, ending in “-ase” (e. g. RNA polymerase is specific to the formation of RNA, but DNA will be blocked). Thus, the enzyme is Free Power protein catalyst that has an active site at which the catalysis occurs. The enzyme can bind Free Power limited number of substrate molecules. The binding site is specific, i. e. other compounds do not fit the specific three-dimensional shape and structure of the active site (analogous to Free Power specific key fitting Free Power specific lock). 

Free energy is that portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i. e. , work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [Free Power] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.