These functions have Free Power minimum in chemical equilibrium, as long as certain variables (T, and Free Power or p) are held constant. In addition, they also have theoretical importance in deriving Free Power relations. Work other than p dV may be added, e. g. , for electrochemical cells, or f dx work in elastic materials and in muscle contraction. Other forms of work which must sometimes be considered are stress-strain, magnetic, as in adiabatic demagnetization used in the approach to absolute zero, and work due to electric polarization. These are described by tensors.
The thermodynamic free energy is Free Power concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that Free Power thermodynamic system can perform in Free Power process at constant temperature, and its sign indicates whether Free Power process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy , it is not absolute but depends on the choice of Free Power zero point. Therefore, only relative free energy values, or changes in free energy , are physically meaningful.
×