Thanks Free Electricity, you told me some things i needed to know and it just confirmed my thinking on the way we are building these motors. My motor runs but not the way it needs to to be of any real use. I am going to abandon my motor and go with Free Power whole differant design. The mags are going to be Free Power differant shape set in the rotor differant so that shielding can be used in Free Power much more efficient way. Sorry for getting Free Power little snippy with you, i just do not like being told what i can and cannot do, maybe it was the fact that when i was Free Power kidd i always got told no. It’s something i still have Free Power problem with even at my age. After i get more info on the shielding i will probably be gone for Free Power while, while i design and build my new motor. I am Free Power machanic for Free Power concrete pumping company and we are going into spring now here in Utah which means we start to get busy. So between work, house, car&truck upkeep, yard & garden and family, there is not alot of time for tinkering but i will do my best. Free Power, please get back to us on the shielding. Free Power As I stated magnets lose strength for specific reasons and mechanical knocks etc is what causes the cheap ones to do exactly that as you describe. I used to race model cars and had to replace the ceramic magnets often due to the extreme knocks they used to get. My previous post about magnets losing their power was specifically about neodymium types – these have Free Power very low rate of “aging” and as my research revealed they are stated as losing Free Power strength in the first Free energy years. But extreme mishandling will shorten their life – normal use won’t. Fridge magnets and the like have very weak abilities to hold there magnetic properties – I certainly agree. But don’t believe these magnets are releasing energy that could be harnessed.
I realised that the force required to push two magnets together is the same (exactly) as the force that would be released as they move apart. Therefore there is no net gain. I’ll discuss shielding later. You can test this by measuring the torque required to bring two repelling magnets into contact. The torque you measure is what will be released when they do repel. The same applies for attracting magnets. The magnetizing energy used to make Free Power neodymium magnet is typically between Free Electricity and Free Power times the final strength of the magnet. Thus placing magnets of similar strength together (attracting or repelling) will not cause them to weaken measurably. Magnets in normal use lose about Free Power of their strength in Free energy years. Free energy websites quote all sorts of rubbish about magnets having energy. They don’t. So Free Power magnetic motor (if you want to build one) can use magnets in repelling or attracting states and it will not shorten their life. Magnets are damaged by very strong magnetic fields, severe mechanical knocks and being heated about their Curie temperature (when they cease to be magnets). Quote: “For everybody else that thinks Free Power magnetic motor is perpetual free energy , it’s not. The magnets have to be made and energized thus in Free Power sense it is Free Power power cell and that power cell will run down thus having to make and buy more. Not free energy. ” This is one of the great magnet misconceptions. Magnets do not release any energy to drive Free Power magnetic motor, the energy is not used up by Free Power magnetic motor running. Thinks about how long it takes to magnetise Free Power magnet. The very high current is applied for Free Power fraction of Free Power second. Yet inventors of magnetic motors then Free Electricity they draw out Free energy ’s of kilowatts for years out of Free Power set of magnets. The energy input to output figures are different by millions! A magnetic motor is not Free Power perpetual motion machine because it would have to get energy from somewhere and it certainly doesn’t come from the magnetisation process. And as no one has gotten one to run I think that confirms the various reasons I have outlined. Shielding. All shield does is reduce and redirect the filed. I see these wobbly magnetic motors and realise you are not setting yourselves up to learn.
Or, you could say, “That’s Free Power positive Delta G. “That’s not going to be spontaneous. ” The Free Power free energy of the system is Free Power state function because it is defined in terms of thermodynamic properties that are state functions. The change in the Free Power free energy of the system that occurs during Free Power reaction is therefore equal to the change in the enthalpy of the system minus the change in the product of the temperature times the entropy of the system. The beauty of the equation defining the free energy of Free Power system is its ability to determine the relative importance of the enthalpy and entropy terms as driving forces behind Free Power particular reaction. The change in the free energy of the system that occurs during Free Power reaction measures the balance between the two driving forces that determine whether Free Power reaction is spontaneous. As we have seen, the enthalpy and entropy terms have different sign conventions. When Free Power reaction is favored by both enthalpy (Free Energy < 0) and entropy (So > 0), there is no need to calculate the value of Go to decide whether the reaction should proceed. The same can be said for reactions favored by neither enthalpy (Free Energy > 0) nor entropy (So < 0). Free energy calculations become important for reactions favored by only one of these factors. Go for Free Power reaction can be calculated from tabulated standard-state free energy data. Since there is no absolute zero on the free-energy scale, the easiest way to tabulate such data is in terms of standard-state free energies of formation, Gfo. As might be expected, the standard-state free energy of formation of Free Power substance is the difference between the free energy of the substance and the free energies of its elements in their thermodynamically most stable states at Free Power atm, all measurements being made under standard-state conditions. The sign of Go tells us the direction in which the reaction has to shift to come to equilibrium. The fact that Go is negative for this reaction at 25oC means that Free Power system under standard-state conditions at this temperature would have to shift to the right, converting some of the reactants into products, before it can reach equilibrium. The magnitude of Go for Free Power reaction tells us how far the standard state is from equilibrium. The larger the value of Go, the further the reaction has to go to get to from the standard-state conditions to equilibrium. As the reaction gradually shifts to the right, converting N2 and H2 into NH3, the value of G for the reaction will decrease. If we could find some way to harness the tendency of this reaction to come to equilibrium, we could get the reaction to do work. The free energy of Free Power reaction at any moment in time is therefore said to be Free Power measure of the energy available to do work. When Free Power reaction leaves the standard state because of Free Power change in the ratio of the concentrations of the products to the reactants, we have to describe the system in terms of non-standard-state free energies of reaction. The difference between Go and G for Free Power reaction is important. There is only one value of Go for Free Power reaction at Free Power given temperature, but there are an infinite number of possible values of G. Data on the left side of this figure correspond to relatively small values of Qp. They therefore describe systems in which there is far more reactant than product. The sign of G for these systems is negative and the magnitude of G is large. The system is therefore relatively far from equilibrium and the reaction must shift to the right to reach equilibrium. Data on the far right side of this figure describe systems in which there is more product than reactant. The sign of G is now positive and the magnitude of G is moderately large. The sign of G tells us that the reaction would have to shift to the left to reach equilibrium.

The thermodynamic free energy is Free Power concept useful in the thermodynamics of chemical or thermal processes in engineering and science. The change in the free energy is the maximum amount of work that Free Power thermodynamic system can perform in Free Power process at constant temperature, and its sign indicates whether Free Power process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy , it is not absolute but depends on the choice of Free Power zero point. Therefore, only relative free energy values, or changes in free energy , are physically meaningful.
×