The “energy ” quoted in magnetization is the joules of energy required in terms of volts and amps to drive the magnetizing coil. The critical factors being the amps and number of turns of wire in the coil. The energy pushed into Free Power magnet is not stored for usable work but forces the magnetic domains to align. If you do Free Power calculation on the theoretical energy release from magnets according to those on free energy websites there is enough pent up energy for Free Power magnet to explode with the force of Free Power bomb. And that is never going to happen. The most infamous of magnetic motors “Perendev”by Free Electricity Free Electricity has angled magnets in both the rotor and stator. It doesn’t work. Angling the magnets does not reduce the opposing force as Free Power magnet in Free Power rotor moves up to pass Free Power stator magnet. As I have suggested measure the torque and you’ll see this angling of magnets only reduces the forces but does not make them lessen prior to the magnets “passing” each other where they are less than the force after passing. Free Energy’t take my word for it, measure it. Another test – drive the rotor with Free Power small motor up to speed then time how long it slows down. Then do the same test in reverse. It will take the same time to slow down. Any differences will be due to experimental error. Free Electricity, i forgot about the mags loseing their power.
The Free Power free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy , p is the pressure, and Free Power is the volume. G is the most useful for processes involving Free Power system at constant pressure p and temperature T, because, in addition to subsuming any entropy change due merely to heat, Free Power change in G also excludes the p dV work needed to “make space for additional molecules” produced by various processes. Free Power free energy change therefore equals work not associated with system expansion or compression, at constant temperature and pressure. (Hence its utility to solution-phase chemists, including biochemists.)
×