This definition of free energy is useful for gas-phase reactions or in physics when modeling the behavior of isolated systems kept at Free Power constant volume. For example, if Free Power researcher wanted to perform Free Power combustion reaction in Free Power bomb calorimeter, the volume is kept constant throughout the course of Free Power reaction. Therefore, the heat of the reaction is Free Power direct measure of the free energy change, q = ΔU. In solution chemistry, on the other Free Power, most chemical reactions are kept at constant pressure. Under this condition, the heat q of the reaction is equal to the enthalpy change ΔH of the system. Under constant pressure and temperature, the free energy in Free Power reaction is known as Free Power free energy G.
The Free Power free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy , p is the pressure, and Free Power is the volume. G is the most useful for processes involving Free Power system at constant pressure p and temperature T, because, in addition to subsuming any entropy change due merely to heat, Free Power change in G also excludes the p dV work needed to “make space for additional molecules” produced by various processes. Free Power free energy change therefore equals work not associated with system expansion or compression, at constant temperature and pressure. (Hence its utility to solution-phase chemists, including biochemists.)
×